Hybrid transcription factors, resulting from gene fusions in the wake of chromosomal translocations, have been implicated in leukemogenesis, but their precise contributions to oncogenic conversion remain unclear. The E2A-HLF fusion gene, formed by a t(17;19)(q22;p13) in childhood pro-B-cell acute lymphoid leukemia, encodes a hybrid protein that contains the trans-activation domain of E2A (E12/E47) linked to the bZIP DNA-binding and dimerization domain of hepatic leukemia factor (HLF). Here we report that both HLF and E2A-HLF bind to a 10-bp consensus sequence, 5'-GTTACGTAAT-3', with a core dyad-symmetric motif characteristic of the bZIP scissors-grip model of DNA binding. A probe containing this sequence bound chimeric E2A-HLF proteins in nuclear extracts of a leukemic cell line (UOC-B1) containing the t(17;19), as demonstrated by complexes supershifted with antibodies specific for amino-terminal epitopes of E2A or carboxyl-terminal eptiopes of HLF. E2A-HLF functioned as a potent trans activator of reporter gene expression from a plasmid that contained the consensus DNA-binding sequence. Interestingly, wild-type HLF was restricted in its capacity to act as a trans activator, functioning in human fetal kidney cells but not HepG2 hepatocarcinoma cells or NIH 3T3 mouse fibroblasts. The ability of the E2A-HLF hybrid protein to bind DNA in a sequence-specific manner and trans activate the expression of artificial reporter genes suggests that it could subvert transcriptional programs that normally control the growth, differentiation, and survival of lymphoid progenitor cells.