To determine whether G proteins activate cardiac ATP-sensitive K+ (KATP) channels by regulating intracellular ATP (ATPi)-dependent gating, currents were measured in inside-out patches. When ATPi closed KATP channels, activators of endogenous G proteins, GTP (plus adenosine or acetylcholine), GTP gamma S, or AlF-4 stimulated channels, an effect prevented by GDP beta S. In the absence of ATPi, G protein activators were ineffective. Intracellular nucleoside diphosphates restored KATP channel openings after the "rundown" of spontaneous activity. Only when ATPi suppressed nucleoside diphosphate-induced openings, GTP gamma S or AlF-4 enhanced KATP channel activity. Active forms of exogenous G protein subunits (G alpha i-1, G alpha i-2, or G alpha o) activated only KATP channels closed by ATPi. G proteins stimulate cardiac KATP channels apparently by antagonizing ATPi-dependent inhibitory gating. Regulation of ligand-dependent gating represents a distinct type of G protein modulation of ion channels.