This study investigated the relative roles of the interosseous membrane (IOM) and triangular fibrocartilage complex (TFCC) in the transmission of force from the hand to the humerus. Our findings suggest a spectrum of forearm destabilizing injuries. The intact radius abutting the capitellum provides the primary restraint to proximal migration of the radius. After radial head excision, up to 7 mm of proximal radial migration can occur under axial compression. If the TFCC or the IOM alone is disrupted, little alteration in load or displacement is evident. When both the midportion of the IOM and TFCC are incompetent, however, further proximal radial migration occurs, the radial stump abuts the humerus, and load is shifted back to the radial column. These data suggest that the central portion of the IOM is the crucial structural subdivision within the IOM acting as a restraint to proximal radial migration. The TFCC also resists proximal radial migration and participates in load transfer. We propose that clinical migration of the radius under an axial load greater than 7 mm implies disruption of both the midportion of the IOM and TFCC.