The chemotherapeutic drug etoposide (VP-16) causes the equilibrium reaction between noncleavable and cleavable topoisomerase II-DNA complexes to shift in favor of the cleavabel complex [H. Zang, P. D'Arpa, and L.F. Liu, Cancer Cells (Cold Spring Harbor), 2:23-27, 1990]. Pulsed-field gel electrophoresis was used to study induction and removal of cleavable complexes in cells heated before, during, or after VP-16 treatment. Pulsed-field gel electrophoresis results were evaluated both as the fraction of activity (DNA) released from the plug and as the number of double-strand breaks (DSBs) calculated from molecular weight distributions; both end points led to the same conclusions. When cells were heated at 42 degrees C during treatment with VP-16 (12 micrograms/ml up to 60 min), a slight decrease in cleavable complexes (from 30 to 20 DSBs/100 megabase pairs) was detected immediately after treatment when compared with cells treated with the drug at 37 degree C. Furthermore, heating at 42 degrees C caused a slight decrease in drug cytotoxicity as measured by less than a 2-fold increase in clonogenic survival. When cells were heated for 10 min at 45.5 degrees C prior to or after treatment with the drug, there was a reduction (approximately 50%) immediately after treatment in the number of DSBs/100 megabase pairs compared with unheated cells. The rate of removal of cleavable complexes was decreased slightly by heat. After 120 min at 37 degrees C, the number of DSB/100 megabase pairs decreased to approximately 6 for both unheated cells and those heated prior to drug treatment and to approximately 8 for cells heated after drug treatment. In agreement with a low effect of heat on the number of cleavable complexes after drug treatment, there was no significant effect of this heating protocol on drug cytotoxicity. However, heating at 45.5 degrees C prior to drug treatment at 37 degrees C protected cells from drug cytotoxicity (e.g., increased survival after 12 micrograms/ml for 60 min by approximately 100-fold) despite the similarity in the induction and rate of removal of cleavable complexes when compared with nonheated cells. Thus, when cells are heated prior to administration of VP-16, drug cytotoxicity does not correlate with the number of cleavable complexes measured either immediately after treatment or 180 min later when approximately 75% of the initial number have been removed. Finally, since hyperthermia can actually decrease drug cytotoxicity, the use of hyperthermia as an adjuvant to chemotherapy involving topoisomerase II poisons, such as VP-16, should be approached with caution.