A combination of cytogenetic and molecular analyses has shown that several different transposable elements are involved in the restructuring of Drosophila chromosomes. Two kinds of elements, P and hobo, are especially prone to induce chromosome rearrangements. The mechanistic details of this process are unclear, but, at least some of the time, it seems to involve ectopic recombination between elements inserted at different chromosomal sites; the available data suggest that these ectopic recombination events are much more likely to occur between elements in the same chromosome than between elements in different chromosomes. Other Drosophila transposons also appear to mediate chromosome restructuring by ectopic recombination; these include the retrotransposons BEL, roo, Doc and I and the foldback element FB. In addition, two retrotransposons, HeT-A and TART, have been found to be associated specifically with the ends of Drosophila chromosomes. Very limited data indicate that transposon-mediated chromosome restructuring is occurring in natural populations of Drosophila. This suggests that transposable elements may help to shape the structure of the Drosophila genome and implies that they may have a similar role in other organisms.