Biological importance and cooperativity of HIV-1 regulatory gene splice acceptors

Virology. 1994 Jul;202(1):264-71. doi: 10.1006/viro.1994.1342.

Abstract

The replication of HIV-1 mutants containing altered splice acceptor sequences was studied. The splice acceptor sites 5' of the essential tat and rev AUG codons were altered to eliminate specifically spliced species from the viral repertoire of mRNAs. All splice site mutants were attenuated or fully defective. Mutation of the tat splice acceptor (exon 4) caused loss of the mRNA species containing exon 4 and resulted in an attenuated but replication-competent phenotype. Mutation of the rev splice acceptor sites resulted in viral genomes that failed to propagate in vitro. Mutation of the more 5' of the two major rev acceptors (exon 4A) caused loss of the mRNA species containing exon 4A together with a compensatory increase in use of the more 3' of the rev acceptors (exon 4B). Mutation of the splice acceptor for exon 4B caused the unexpected loss of both exon 4A- and 4B-containing mRNAs. In addition to these effects on the rev splice acceptors, mutations at the 4A and 4B sites also resulted in decreased use of the tat splice site (exon 4) located 175 nucleotides upstream. These effects on utilization of the tat splice acceptor site may explain the requirement for tat to efficiently complement these mutants. The 4A mutant was complemented by tat but not by rev. The 4B mutant was complemented by rev but required both tat and rev for maximum complementation. These data suggested a cooperativity among these splice sites necessary for efficient viral replication. They also indicated that while viral replication persisted at low levels in the absence of splicing to the known site 5' of the tat AUG, failure to splice to at least one of the two major sites 5' of the rev AUG resulted in insufficient rev activity for replication competence.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Cell Line
  • Cloning, Molecular
  • Codon
  • DNA, Viral
  • Genes, Regulator*
  • Genes, Viral
  • Genes, rev
  • Genes, tat
  • Genetic Complementation Test
  • HIV-1 / genetics*
  • HIV-1 / physiology
  • Mutagenesis
  • Phenotype
  • Polymerase Chain Reaction
  • RNA Splicing*
  • RNA, Messenger / genetics
  • RNA, Viral / genetics*
  • Viral Structural Proteins / genetics
  • Virus Replication

Substances

  • Codon
  • DNA, Viral
  • RNA, Messenger
  • RNA, Viral
  • Viral Structural Proteins