Identification of coelomocyte unconventional myosin and its association with in vivo particle/vesicle motility

J Cell Sci. 1994 Aug:107 ( Pt 8):2081-94. doi: 10.1242/jcs.107.8.2081.

Abstract

Sea urchin coelomocytes undergo an inducible structural transformation from petalloid to filopodial form during the 'clotting' response in sea urchins. Using a petalloid coelomocyte model, stimulated coelomocytes exhibited bidirectional particle/vesicle motility with a broad distribution of velocities, ranging from 0.02 to 0.12 microns s-1 in the outward bound direction. Coelomocytes treated with the microtubule-disrupting drug, nocodazole, continued to exhibit outward particle/vesicle movements along linear paths with an average velocity of 0.028 +/- 0.006 microns s-1. We partially purified a 110 kDa polypeptide possessing K+EDTA-, Ca2(+)-, Mg2(+)- and F-actin-activated Mg(2+)-ATPase activities characteristic of myosin-like motor proteins. The 110 kDa protein immuno-crossreacted with both affinity-purified, anti-brush border unconventional myosin-I polyclonal antibodies and anti-Acanthamoeba myosin head monoclonal antibodies. By indirect immunofluorescence, the 110 kDa unconventional myosin was localized to clusters of particles/vesicles within the perinuclear region of unstimulated coelomocytes, an area containing numerous mitochondria, acidic, lysosomal and Golgi organelles. Indirect immunofluorescence of partially transformed and filopodial coelomocytes detected a diminution of perinuclear staining with a concomitant appearance of stained linear arrays of particles/vesicles, enhanced staining of peripheral lamellae, and staining of the entire length of the filopodia. Subfractionation of unstimulated coelomocyte homogenates on linear sucrose gradients identified distinct peaks of ATPase activity associated with fractions containing conventional and 110 kDa unconventional myosin. Unconventional myosin-containing fractions were found to have numerous particles that stained with anti-brush border unconventional myosin-I antibodies and the lipophilic dye, DiOC6. Thus, coelomocytes demonstrate activatable movements of particles/vesicles in cells devoid of microtubules and possess an unconventional myosin, which may be the motor protein driving particle/vesicle translocation.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Ca(2+) Mg(2+)-ATPase / analysis
  • Cell Compartmentation
  • Cell Separation
  • Cross Reactions
  • Microscopy, Fluorescence
  • Microscopy, Video
  • Microtubules / physiology
  • Movement / physiology*
  • Myosins / classification
  • Myosins / immunology
  • Myosins / physiology*
  • Organelles / physiology
  • Sea Urchins / cytology
  • Sea Urchins / enzymology
  • Sea Urchins / physiology*

Substances

  • Ca(2+) Mg(2+)-ATPase
  • Myosins