The elongation cycle of protein synthesis systems of purple nonsulfur photosynthetic bacteria Rhodobacter sphaeroides, grown both phototrophically and chemotrophically, was studied using 33 inhibitors with different chemical structures and functional and domain specificities. No functional differences between phototrophic and chemotrophic ribosomal systems were detected. Rhodobacter sphaeroides ribosomes exhibited strong hypersensitivity to nine functional inhibitors when compared with Escherichia coli ribosomes. Most of the R. sphaeroides ribosomal hypersensitivities corresponded to peptidyltransferase inhibitors, implying that this important functional neighborhood must be somehow different in the two organisms.