It has been postulated that the product (pRB) of the retinoblastoma gene dissociates from the E2F-pRB complex upon phosphorylation by cyclin-dependent kinase(s) (cdk). However, there is no direct evident for the regulation of formation of the E2F-pRB complex via phosphorylation by purified cdk. Therefore, we investigated the regulation of formation of this complex by phosphorylation using pRB and purified cyclin A-cdk2, cyclin E-cdk2 or cyclin D1-cdk4. Purified pRB was incubated with nuclear extracts prepared from pRB-defective cells and then subjected to gel mobility shift assays. We confirmed that unphosphorylated pRB associated with various types of E2F but pRB has been phosphorylated by cyclin A-cdk2 did not. We found that E2F-pRB complexes were disrupted as a consequence of phosphorylation by cyclin A-cdk2, and the levels of the free forms of E2Fs increased. We also found that not only the E2F-pRB complexes but also the E2F-p107 complexes were disrupted upon phosphorylation by cyclin A-cdk2. Furthermore, E2F-pRB complexes were disrupted through phosphorylation by cyclin D1-cdk4 and cyclin E-cdk2, as well as by cyclin A-cdk2. These results clearly demonstrate that the phosphorylation of pRB and p107 by cdks regulates the formation of complexes between E2F and pRB or p107.