The tryptophan pyrrole-ring cleavage enzyme (TPCE) was detected in the yeast Saccharomyces cerevisiae. TPCE activity existed constitutively and was markedly induced by culturing the cells in a medium containing 0.1% (w/v) L-tryptophan. We purified partially the enzyme from the L-tryptophan-induced cells by phospho-cellulose column chromatography. The partially purified enzyme was stimulated solely by L-ascorbic acid, a nonspecific reductant, suggesting that the yeast TPCE is not indoleamine 2,3-dioxygenase, but rather tryptophan 2,3-dioxygenase. The enzyme metabolized L-tryptophan preferentially, and D-tryptophan slightly. KCN and NaN3, exogenous ligands of heme, inhibited the enzyme activity drastically, indicating that yeast tryptophan 2,3-dioxygenase contains heme(s) in its active site. The optimal pH of the enzyme was 6.5. Upon two-dimensional polyacrylamide gel electrophoresis, a protein staining spot was identified that was induced by L-tryptophan and whose intensity changed in correlation with the tryptophan 2,3-dioxygenase activity after phospho-cellulose column chromatography. This protein, exhibiting a molecular weight of approximately 38,000 and an isoelectric point of approximately pH 8.0, may be identified as a subunit of yeast tryptophan 2,3-dioxygenase.