Structure of a small RNA hairpin

Nucleic Acids Res. 1993 Feb 11;21(3):537-45. doi: 10.1093/nar/21.3.537.

Abstract

The hairpin stem-loop form of the RNA oligonucleotide rCGC(UUU)GCG has been studied by NMR spectroscopy. In 10 mM phosphate buffer this RNA molecule forms a unimolecular hairpin with a stem of three base pairs and a loop of three uridines, as judged by both NMR and UV absorbance melting behavior. Distance and torsion angle restraints were determined using homonuclear proton-proton and heteronuclear proton-phosphorus 2-D NMR. These values were used in restrained molecular dynamics to determine the structure of the hairpin. The stem has characteristics of A-form geometry, although distortion from A-form occurs in the 3'-side of the stem, presumably to aid in accommodating the small loop. The loop nucleotides adopt C2'-endo conformations. NOE's strongly suggest stacking of the uracils with the stem, especially the first uracil on the 5'-side of the loop. The reversal of the chain direction in the loop seems to occur between U5 and U6. Loop structures produced by molecular dynamics simulations had a wide range of conformations and did not show stacking of the uracils. A flexible loop with significant dynamics is consistent with all the data.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Base Sequence
  • Hydrogen Bonding
  • Magnetic Resonance Spectroscopy
  • Models, Molecular
  • Molecular Sequence Data
  • Nucleic Acid Conformation*
  • RNA / chemistry*
  • Thermodynamics

Substances

  • RNA