During endurance exercise at approximately 65% maximal O2 consumption, women oxidize more lipids, and therefore decrease carbohydrate and protein oxidation, compared with men (L.J. Tarnopolsky, M.A. Tarnopolsky, S.A. Atkinson, and J.D. MacDougall. J. Appl. Physiol. 68: 302-308, 1990; S.M. Phillips, S.A. Atkinson, M.A. Tarnopolsky, and J.D. MacDougall. J. Appl. Physiol. 75: 2134-2141, 1993). The main purpose of this study was to examine the ability of similarly trained male (n = 7) and female (n = 8) endurance athletes to increase muscle glycogen concentrations in response to an increase in dietary carbohydrate from 55-60 to 75% of energy intake for a period of 4 days (carbohydrate loading). In addition, we sought to examine whether gender differences existed in metabolism during submaximal endurance cycling at 75% peak O2 consumption (VO2 peak) for 60 min. The men increased muscle glycogen concentration by 41% in response to the dietary manipulation and had a corresponding increase in performance time during an 85% VO2 peak trial (45%), whereas the women did not increase glycogen concentration (0%) or performance time (5%). The women oxidized significantly more lipid and less carbohydrate and protein compared with the men during exercise at 75% VO2-peak. We conclude that women did not increase muscle glycogen in response to the 4-day regimen of carbohydrate loading described. In addition, these data support previous observations of greater lipid and lower carbohydrate and protein oxidation by women vs. men during submaximal endurance exercise.