The effects of a 12-week endurance training programme (treadmill) upon the passive and the noradrenaline-activated properties of the aorta were studied in 15 trained and 24 sedentary rats. Aortic compliance was studied by measuring the length-tension curves of rings of the descending aorta without (passive properties) and with noradrenaline (noradrenaline activated) in a bubbling Krebs bath kept at a temperature of 37 degrees. The training effect on aortic volume compliance was studied by transforming the tension-length curves into a cross-sectional area-pressure curve according to Laplace's law. The noradrenaline responsiveness was studied by the dose-effect curve. The mechanical data were correlated with the results of a histomorphometric study which measured the aortic wall thickness and the percentages and amounts of elastic, connective and muscle components. Passive aortic compliance and volume compliance were higher in endurance-trained rats whose tunica media presented a lower percentage of collagen and a larger amount of elastic tissue. The dose-effect curve showed that the maximal aortic response to noradrenaline was stronger in trained rats but that the half maximal effective dose was not different. As a consequence, the length-tension curves of the noradrenaline fully activated aorta were similar in trained and sedentary rats except at the highest tensions where collagen is the main factor determining aortic stiffness. The increased noradrenaline response in trained rats was probably the result of the hypertrophy of the smooth muscle cells as maximal active strain (Newtons per square metre) was similar in trained and sedentary rats.