The adult Drosophila wing (as the other appendages) is subdivided into anterior and posterior compartments that exhibit characteristic patterns. The engrailed (en) gene has been proposed to be paramount in the specification of the posterior compartment identity. Here, we explore the adult en function by targeting its expression in different regions of the wing disc. In the anterior compartment, ectopic en expression gives rise to the substitution of anterior structures by posterior ones, thus demonstrating its role in specification of posterior patterns. The en-expressing cells in the anterior compartment also induce high levels of the hedgehog (hh) and decapentaplegic (dpp) gene products, which results in local duplications of anterior patterns. Besides, hh is able to activate en and the engrailed-related gene invected (inv) in this compartment. In the posterior compartment we find that elevated levels of en product result in partial inactivation of the endogenous en and inv genes, indicating the existence of a negative autoregulatory mechanism. We propose that en has a dual role: a general one for patterning of the appendage, achieved through the activation of secreted proteins like hh and dpp, and a more specific one, determining posterior identity, in which the inv gene may be implicated.