In vivo gene therapy with p53 or p21 adenovirus for prostate cancer

Cancer Res. 1995 Nov 15;55(22):5151-5.

Abstract

We introduced the gene for wild-type human p53 or p21, a critical downstream mediator of p53-induced growth suppression, into a p53-deficient mouse prostate cancer cell line using a recombinant adenoviral vector (Ad5CMV-p53 or Ad5CMV-p21). Elevated levels of endogenous mouse p21 mRNA provided evidence for the functional activity of virally transduced p53. Functional activity of viral-transduced p21 was demonstrated through immunoprecipitation of cellular protein extracts, which showed that the viral-transduced p21 associates with cyclin-dependent kinase 2 and was sufficient to down-regulate the activity of the cyclin-dependent kinase by approximately 65%. In vitro growth assays revealed significantly higher growth suppression after Ad5CMV-p21 infection compared to Ad5CMV-p53. In vivo studies in syngeneic male mice with established s.c. prostate tumors demonstrated that the rate of growth and final tumor volume were reduced to a much greater extent in mice that received intratumor injection of Ad5CMV-p21 compared to Ad5CMV-p53. In addition, the survival of host animals bearing tumors that were infected with Ad5CMV-p21, but not Ad5CMV-p53, was significantly extended. These data suggest that Ad5CMV-p21 may be effective as a therapeutic agent for prostate cancer.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adenoviridae / genetics*
  • Animals
  • Cell Division
  • Cyclin-Dependent Kinase Inhibitor p21
  • Cyclins / genetics*
  • Genes, p53*
  • Genetic Therapy*
  • Humans
  • Male
  • Mice
  • Prostatic Neoplasms / pathology
  • Prostatic Neoplasms / therapy*
  • Protein Kinase Inhibitors*
  • Tumor Cells, Cultured

Substances

  • CDKN1A protein, human
  • Cdkn1a protein, mouse
  • Cyclin-Dependent Kinase Inhibitor p21
  • Cyclins
  • Protein Kinase Inhibitors