Segregation of unreplicated chromosomes in Saccharomyces cerevisiae reveals a novel G1/M-phase checkpoint

Mol Cell Biol. 1995 Oct;15(10):5312-21. doi: 10.1128/MCB.15.10.5312.

Abstract

Saccharomyces cerevisiae dbf4 and cdc7 cell cycle mutants block initiation of DNA synthesis (i.e., are iDS mutants) at 37 degrees C and arrest the cell cycle with a 1C DNA content. Surprisingly, certain dbf4 and cdc7 strains divide their chromatin at 37 degrees C. We found that the activation of the Cdc28 mitotic protein kinase and the Dbf2 kinase occurred with the correct relative timing with respect to each other and the observed division of the unreplicated chromatin. Furthermore, the division of unreplicated chromatin depended on a functional spindle. Therefore, the observed nuclear division resembled a normal mitosis, suggesting that S. cerevisiae commits to M phase in late G1 independently of S phase. Genetic analysis of dbf4 and cdc7 strains showed that the ability to restrain mitosis during a late G1 block depended on the genetic background of the strain concerned, since the dbf4 and cdc7 alleles examined showed the expected mitotic restraint in other backgrounds. This restraint was genetically dominant to lack of restraint, indicating that an active arrest mechanism, or checkpoint, was involved. However, none of the previously described mitotic checkpoint pathways were defective in the iDS strains that carry out mitosis without replicated DNA, therefore indicating that the checkpoint pathway that arrests mitosis in iDS mutants is novel. Thus, spontaneous strain differences have revealed that S. cerevisiae commits itself to mitosis in late G1 independently of entry into S phase and that a novel checkpoint mechanism can restrain mitosis if cells are blocked in late G1. We refer to this as the G1/M-phase checkpoint since it acts in G1 to restrain mitosis.

MeSH terms

  • CDC28 Protein Kinase, S cerevisiae / metabolism
  • Cell Cycle Proteins*
  • Chromosomes, Fungal*
  • DNA Replication / drug effects
  • Enzyme Activation
  • Fungal Proteins / genetics
  • G1 Phase*
  • Histidine Kinase
  • Hydroxyurea / pharmacology
  • Mitosis / genetics*
  • Models, Genetic
  • Mutation
  • Nocodazole / pharmacology
  • Protein Kinases / genetics
  • Protein Kinases / metabolism
  • Protein Serine-Threonine Kinases*
  • Saccharomyces cerevisiae / enzymology
  • Saccharomyces cerevisiae / genetics*
  • Saccharomyces cerevisiae Proteins*
  • Spindle Apparatus / drug effects
  • Spindle Apparatus / physiology
  • Temperature

Substances

  • Cell Cycle Proteins
  • Dbf4 protein, S cerevisiae
  • Fungal Proteins
  • Saccharomyces cerevisiae Proteins
  • Protein Kinases
  • CDC7 protein, S cerevisiae
  • DBF2 protein, S cerevisiae
  • Protein Serine-Threonine Kinases
  • CDC28 Protein Kinase, S cerevisiae
  • Histidine Kinase
  • Nocodazole
  • Hydroxyurea