The purpose of this work was to assess the respective role of bile acid excretion and of the end-products of cecal fermentations in the cholesterol-lowering effect of complex carbohydrates. The effects of two different fermentable carbohydrates (guar gum, beta-cyclodextrin), and sequestrant resin (cholestyramine) have been investigated in male Wistar rats. Guar gum and beta-cyclodextrin are broken down in the large bowel, with fermentation rich in propionic acid (37% against 26% for control), whereas cholestyramine did not enhance cecal fermentation. beta-Cyclodextrin and guar gum were less potent than cholestyramine to enhance bile acids and sterol excretion. Nevertheless, fermentable carbohydrates exerted a more potent cholesterol-lowering effect than cholestyramine. beta-Cyclodextrin also depressed triacylglycerol-rich lipoprotein (TGRLP). Fermentable carbohydrates lowered cholesterol of LDL and HDL1 fractions. The induction of hepatic HMG-CoA reductase was practically proportional to rate of fecal steroid excretion. Moreover, with beta-cyclodextrin, hepatic HMG-CoA reductase induction was concomitant to a decrease in fatty acid synthase (FAS) activity. Thus, the cholesterol-lowering effect of fermentable carbohydrates could be related to a depressed lipogenesis, as well as to an accelerated removal of HDL1, in relation to an elevated hepatic demand of cholesterol. In conclusion, fermentable carbohydrates could favour cholesterol elimination and have a general lipid-lowering effect by exerting more complex physiological effects than cholestyramine.