The covalent sequence specificity of a series of nitrogen mustard-containing analogues of distamycin was determined using modified sequencing techniques. The analogues tether benzoic acid mustard (BAM) and possess either one, two, or three pyrrole-amide units. Previous characterization of the biological profile of the series revealed an increase in cytotoxicity for each corresponding increase in the number of pyrrole units, while showing poor cross-link formation in isolated and cellular DNA. Examination of the sequence specificity revealed that BAM produced guanine-N7 lesions in similar manner to other conventional nitrogen mustards. The monopyrrole BAM conjugate also produced guanine-N7 alkylation in a similar pattern to BAM. However, alkylation of adenines was also seen that was found to be minor groove adenine-N3 lesions. The dipyrrole and tripyrrole conjugates did not produce detectable guanine-N7 alkylation but only alkylated in AT tracts. In addition, the tripyrrole conjugate preferentially alkylated only a subset of those sites alkylated by the monopyrrole and dipyrrole conjugates. Two sites, 5'-TTTTGG and 5'-TTTTGA, confirmed as guanine-N3 and adenine-N3 lesions, respectively, were strongly alkylated by the tripyrrole conjugate in preference to other similar sites including three occurrences of 5'-TTTTAA. Footprinting studies comparing distamycin and the tripyrrole conjugate showed identical non-covalent recognition of AT-rich sites. Hence, the drug that possessed the most enhanced sequence specificity for alkylation was also the most cytotoxic of this series.