Comparative anti-HIV evaluation of diverse HIV-1-specific reverse transcriptase inhibitor-resistant virus isolates demonstrates the existence of distinct phenotypic subgroups

Antiviral Res. 1995 Mar;26(2):117-32. doi: 10.1016/0166-3542(94)00069-k.

Abstract

We have biologically and biochemically evaluated a structurally diverse group of HIV-1-specific reverse transcriptase (RT) inhibitors and determined that the members of this class share many common properties. These include reproducible and selective antiviral activity against a panel of biologically distinct laboratory and clinical strains of HIV-1, activity against HIV-1 in a wide variety of cultured and fresh human cells, and potent inhibition of HIV-1 RT when evaluated using a heteropolymeric ribosomal RNA template assay. Each of the HIV-1-specific compounds was capable of inhibiting HIV replication when challenged at high m.o.i., further distinguishing them from the nucleoside analogs 3'-azido-3'-deoxythymidine (AZT) and 2',3'-dideoxycytidine (ddC). When tested in combination with AZT, each of the HIV-1-specific compounds synergistically inhibited the replication of HIV-1. HIV-1 isolates resistant to different HIV-1-specific inhibitors exhibited heterogeneous patterns of cross-resistance to other members of this pharmacologic class. Four distinct phenotypic classes have been defined through the use of drug-resistant virus isolates which derive from distinct mutations in the RT. These results indicate that the various subgroups of HIV-1-specific inhibitors interact differently with HIV-1 RT, suggesting important potential implications for drug combination therapeutic strategies.

Publication types

  • Comparative Study
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Antiviral Agents / pharmacology*
  • Cell Line
  • Drug Evaluation
  • Drug Interactions
  • Drug Resistance, Microbial
  • HIV Reverse Transcriptase
  • HIV-1 / drug effects*
  • Humans
  • Phenotype
  • Reproducibility of Results
  • Reverse Transcriptase Inhibitors*
  • Zidovudine / pharmacology

Substances

  • Antiviral Agents
  • Reverse Transcriptase Inhibitors
  • Zidovudine
  • HIV Reverse Transcriptase