Using normal MDCK cells, and MDCK cells stably transfected with a temperature-sensitive viral src allele (pp60 ts-v-src), we have examined the composition and tyrosine phosphorylation of the E-cadherin complex. E-cadherin is a transmembrane calcium-dependent cell-cell adhesion molecule that is complexed with cytoplasmic proteins including alpha-catenin, beta-catenin, plakoglobin (gamma-catenin), and actin. We have identified two heterodimeric complexes which demonstrate that alpha-catenin interacts directly with beta-catenin, or with plakoglobin, in the absence of E-cadherin. beta-Catenin has previously been shown to bind directly to E-cadherin. We propose that E-cadherin associates with alpha-catenin, and thereby the actin cytoskeleton, via either beta-catenin or plakoglobin. We have further identified three new but related protein components of the E-cadherin complex, which are each cross-reactive by Western blot analysis to antibodies directed against p120, a phosphotyrosine substrate of src, and a phosphotyrosine, phosphoserine, and phosphothreonine substrate of growth factor-stimulated signaling pathways. Greater quantities of the p120-related proteins were found present in the E-cadherin immunoprecipitates of ts-src MDCK cells compared to normal MDCK cells, while two of the p120 cross-reactive species were significantly tyrosine phosphorylated in both normal and ts-src MDCK cells. The association of p120-related species with the E-cadherin complex adds them to our consideration of possible modulators of cadherin function. Likewise, the newly identified alpha-catenin-beta-catenin and alpha-catenin-plakoglobin dimers may have interesting biological properties, conceivably including the titration of catenins between cadherin and APC complexes.