Osmotic water transport across plasma membranes in erythrocytes and several epithelial cell types is facilitated by CHIP28, a water-selective membrane channel protein. In order to examine the structure of CHIP28 in membranes, large (1.5-2.5-microns diameter), highly ordered, two-dimensional (2-D) crystals of purified and deglycosylated erythrocyte CHIP28 were generated by reconstitution of detergent-solubilized protein into synthetic lipid bilayers via detergent dialysis. Fourier transforms computed from low-dose electron micrographs of such crystals preserved in negative stain display order to 12-A resolution. The crystal lattice is tetragonal (a = b = 99.2 +/- 1.4 A) with plane group symmetry p4g. A projection density map at 12-A resolution defines the molecular boundary and organization of the CHIP28 monomers in the membrane plane. The unit cell contains four CHIP28 dimers, each composed of two oblong-shaped (37 x 25 A ) monomers with opposite orientations. The CHIP28 monomers associate to form tetrameric structures around the 4-fold axes normal to the membrane plane where stain is excluded. The 2-D crystals of CHIP28 display order extending beyond the limit typically achieved by negative staining and therefore may be amenable to high-resolution structure analysis by cryo-electron microscopy.