Magnetic field exposure among utility workers

Bioelectromagnetics. 1995;16(4):216-26. doi: 10.1002/bem.2250160403.

Abstract

The Electric and Magnetic Field Measurement Project for Utilities--the Electric Power Research Institute (EPRI) Electric and Magnetic Field Digital Exposure (EMDEX) Project (the EPRI EMDEX Project)--was a multifaceted project that entailed technology transfer, measurement protocol design, data management, and exposure assessment analyses. This paper addresses one specific objective of the project: the collection, analysis, and documentation of power-frequency magnetic field exposures for a diverse population of utility workers. Field exposure data measured by an EMDEX system were collected by volunteer utility employees at 59 sites in four countries between September, 1988, and September, 1989. Specially designed sampling procedures and data collection protocols were used to ensure uniform implementation across sites. Volunteers within 13 job classifications recorded which of eight work or three nonwork environments they occupied while wearing an EMDEX meter. Approximately 50,000 hours of magnetic field exposure records taken at 10 s intervals were obtained, about 70% of which were from work environments. Exposures and time spent in environments were analyzed by primary work environment, by occupied environment, and by job classification. Generally, for utility-specific job classifications related to the generation, transmission, and distribution of electricity, the field and exposure measurements in terms of workday mean field were higher than in more general occupations. The job classifications with the highest (median workday mean) exposure were substation operators (0.7 microT) and electricians (0.5 microT). Total variance also tended to be largest for utility-specific job classifications. For these workers, the contributions of between-worker and within-worker variances to total variance were about the same. Measurements in utility-specific environments were higher than in more general environments. Estimates of time-integrated exposure indicated that utility-specific job classifications received about one-half or more of their total exposure on the job. The nonwork field and exposure distributions for workers in all job categories were comparable with median nonworkday means of about 0.09 microT.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Documentation
  • Electricity
  • Electromagnetic Fields*
  • Employment / classification
  • Environmental Monitoring / methods
  • Environmental Monitoring / standards
  • Humans
  • Occupational Exposure*
  • Quality Control