Environmental toxicology research on dose-response relationships of heavy metals requires experiments on laboratory animals exposed to "low doses" of trace elements which should reflect "present or actual environmental levels" characteristic of polluted environments. Unfortunately no criteria exist to establish the "low doses" to which laboratory animals must be exposed, in practice the choice of the level used is made in an almost arbitrary manner. In order to define the "present environmental levels" of heavy metals which should be administered to laboratory animals an approach is suggested, based upon knowledge of the concentrations of trace elements in the diet, air and food as well as the fractions absorbed. Today daily intakes of trace elements by man are of the order of few micrograms or nanograms thus requiring the use of extremely sensitive analytical techniques to determine the very low amounts of heavy metals in tissues and cellular components. In these fields of research the use of radiotracers with very high specific radioactivity appears particularly advantageous but requires considerable care during their preparation and use. The first part of this paper deals with a definition of the ranges of concentrations of trace elements which should be used for metabolic studies on laboratory animals when they are exposed via different routes such as ingestion, inhalation in injection; the second part describes the production of radiotracers with very high specific radioactivity by proton activation in the cyclotron and by neutron irradiation in the nuclear reactor. Their use to label present levels of heavy metals under conditions adapted for biochemical purposes, as well as the preparation of different metal-labelled chemical species is also reported. Particular attention is directed to quality control of the radiotracer solutions which are administered to the animals including those of radioactivity concentrations, radioisotopic purity, radiochemical purity, carrier content and chemical impurities.