Kinetics of the reaction between testosterone and antitestosterone antiserum

Steroids. 1983 Nov;42(5):475-91. doi: 10.1016/0039-128x(83)90112-5.

Abstract

In order to characterize from a kinetic viewpoint the antibody population mainly involved in the binding of testosterone by its homologous antiserum, the kinetics of the association reaction between [1,2,6,7-3H]-testosterone and rabbit antiserum anti-testosterone-3-(O-carboxymethyl)oxime-bovine serum albumin (Ab R2603-1) was followed at pH 7.4 and at constant ionic strength, at temperatures ranging from 2 degrees C to 37 degrees C and at concentration near to work conditions for testosterone radioimmunoassay; dextran coated charcoal suspension was used for the bound/free separation. In the examined concentration range, the observed kinetics trends can be explained by assuming the existence of two classes of antibody binding sites, Ab1 and Ab2. The kinetics of the dissociation reaction of the testosterone-antibody complex was also followed after the addition of a large excess of unlabeled testosterone. At 22.0 degrees C, association and dissociation rate constants are 2.1.10(7) s-1M-1 and 3.7.10(-3) s-1, respectively, for the Ab1 class of antibody binding sites, and 3.6.10(6) s-1M-1 and 7.0.10(-4) s-1 for the Ab2 class. Equilibrium constants obtained from kinetic data were very similar for both classes of antibody binding sites and in good agreement with the equilibrium values obtained from linear Scatchard plot. The order of magnitude of the second order rate constants and the high activation enthalpy for the forward and reverse reaction suggest a mechanism more complex than a simple second order.

Publication types

  • Comparative Study

MeSH terms

  • Animals
  • Antigen-Antibody Reactions*
  • Binding Sites, Antibody
  • In Vitro Techniques
  • Kinetics
  • Rabbits
  • Testosterone / immunology*
  • Thermodynamics

Substances

  • Testosterone