Fetal hematopoietic cells that express the common acute lymphoblastic leukemia antigen (CALLA) were purified from both fetal liver and fetal bone marrow by immune rosetting with sheep erythrocytes coated with rabbit anti-mouse immunoglobulin and by fluorescence-activated cell sorting. Dual fluorescence techniques disclosed that these cells were heterogenous with respect to the expression of a series of differentiation and activation antigens defined by monoclonal antibodies. Thus, whereas all CALLA+ cells were Ia+ and expressed two activation antigens, J2 and T10, only 30-50% expressed B1 antigen. Furthermore, using methanol-fixed cells, it could be shown that approximately 20% contained intracytoplasmic mu chains (cyto-mu) and that approximately 15% were positive for the terminal transferase enzyme (TdT) marker. The CALLA+ fetal cells thus closely resemble the childhood acute lymphoblastic leukemia cell with respect to surface marker phenotype. A population of CALLA- cells devoid of mature erythroid and myeloid surface markers was found to contain higher numbers of TdT+ cells but lower numbers of cyto-mu, B1, and Ia+ cells than the CALLA+ subset. In vitro analysis of normal, purified CALLA+ cells demonstrated that incubation at 37 degrees C with J5 monoclonal antibody specific for CALLA resulted in the specific modulation of surface antigen. Similar results have previously been obtained with CALLA+ tumor cells. Although phenotypic analysis of CALLA+ cells suggests that these cells are relatively immature lymphoid cells, CALLA+ cells do not appear to contain either myeloid precursor cells (CFU-G/M) or the earliest lymphoid stem cells.