We have developed a radioimmunoassay (RIA) for the dodecapeptide that is liberated from protein C when this zymogen is activated by thrombin bound to thrombomodulin present on the vascular endothelium. The protein C activation peptide (PCP) was synthesized using the solid-phase method of Merrifield. Antisera were raised in rabbits to the synthetic analogue coupled to bovine serum albumin with glutaraldehyde. The antibody population obtained was used together with a 125I-labeled tyrosinated ligand and various concentrations of unlabeled PCP to construct a double antibody RIA capable of measuring as little as 10 pM of this component. We have established that the synthetic dodecapeptide has the same immunoreactivity as the native peptide and that the reactivity of protein C is less than 1/2,000 that of PCP on a molar basis. The extremely low levels of peptide in normal individuals as well as the nonspecific contributions of plasma constituents to the immunoreactive signal, necessitated the development of a procedure by which the PCP could be reproducibly extracted from plasma and concentrated approximately 20-fold. This methodology permitted us to demonstrate that the plasma PCP levels in 17 normal donors averaged 6.47 pM, and that elevations up to 180 pM were observed in individuals with evidence of disseminated intravascular coagulation. The validity of these measurements of protein C activation is supported by the fact that, in both of these situations, the RIA signal migrates on reverse-phase high pressure liquid chromatography in a manner identical to that of the native dodecapeptide. We have also noted that the mean PCP concentration in seven patients fully anticoagulated with warfarin averaged 2.61 pM. Our studies also show that PCP is cleared from the plasma of primates with a t1/2 of approximately 5 min. Given that the t1/2 of activated protein C is estimated to be 10-15 min, the latter enzyme appears to exert its effects on the activated cofactors of the coagulation system at concentrations considerably less than 1.0 nM.