Pan-Cancer Analysis Identifies YKT6 as a Prognostic and Immunotherapy Biomarker, with an Emphasis on Cervical Cancer

Onco Targets Ther. 2025 Jan 22:18:107-127. doi: 10.2147/OTT.S491310. eCollection 2025.

Abstract

Background: Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-mediated membrane fusion is crucial for autophagy, making YKT6, a key modulator of cell membrane fusion, a potential target for cancer therapy. However, its oncogenic role across different cancers remains unclear. This study was to investigate the prognostic value and potential immunological functions of YKT6, including cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC).

Methods: Multiple bioinformatics databases, including The Cancer Genome Atlas (TCGA), Cancer Cell Line Encyclopedia (CCLE), and Genotype-Tissue Expression (GTEx) databases, were used to investigate the correlation of the YKT6 expression pattern with the pathological stage and survival rate across cancers. Furthermore, ImmuCellAI, the UCSC Xena platform, and the ESTIMATE algorithm were subsequently utilized to explore the potential relationship between YKT6 expression, the tumor microenvironment, and tumor immune infiltration. Profiling of YKT6 gene mutation and amplification, methylation, and copy number alteration (CNA) was performed on the basis of the TCGA database. Moreover, q-PCR, TMA staining, and siRNA assays were used to validate the cancer-promoting role of YKT6 in CESCs.

Results: Our results reveal that YKT6 is a potential prognostic and cancer immunity biomarker. Elevated YKT6 expression is correlated with poor overall survival (OS) and disease-free survival (DFS). Distinct gene mutation, methylation, and CNA patterns for YKT6 were found in certain types of cancers. The correlation of YKT6 expression with tumor-infiltrating immune cells was verified by analyzing the StromalScore, ESTIMATEScore, ImmuneScore, and tumor purity. In vitro analysis confirmed that YKT6 was highly expressed in advanced-grade CESCs and that the knockdown of YKT6 inhibited the proliferation of cervical cancer cells.

Conclusion: The SNARE protein YKT6 serves as a biomarker and candidate oncogene with actionable mutations. Moreover, YKT6 has the potential to be a prognostic indicator in CESCs. Targeting YKT6 could enhance autophagy regulation and improve therapeutic strategies for personalized cancer treatment.

Keywords: CESC; TCGA; YKT6; immune infiltration; pan-cancer analysis.

Grants and funding

The present study was funded by the National Natural Science Foundation of China (823715350).