Environmental pollution and health problems caused by traditional non-degradable fossil-based plastics are significant concerns, rendering green and renewable bio-based materials, such as cellulose and C36-Priamine (1074), as attractive substitutes. In particular, the low plasticity of cellulose can be optimized using soft alkyl chains. Herein, multifunctional cellulose-based materials were constructed via covalent adaptable networks using the Schiff base reaction of oxidized microcrystalline cellulose with varying aldehyde (dialdehyde cellulose (DAC)) contents and C36-Priamine (1074). Subsequently, a series of DAC/1074 bio-based films were formed via a simple heat-pressing process (T = 90 °C). The resulting films exhibited excellent properties, including high stresses (16.8-28.6 MPa), high strains (4.94-25.38 %), good transparency (>80 %), excellent toughness (118.24-267.61 J/m3), and enhanced water resistance (92.9-94.5 %) and hydrophobicity (water contact angle of 120.6°-132.83°). Owing to their excellent antioxidant and antimicrobial properties, our prepared DAC/1074 films have diversified applications in food packaging, medical materials, and cosmetics.
Keywords: Bio-friendly; Cellulose; Cellulose-based film; Multifunctional materials; Packaging.
Copyright © 2025. Published by Elsevier B.V.