This study aimed to profile metabolites from five Trichoderma strains and assess their cytotoxic and pharmacological activities, particularly targeting oral squamous cell carcinoma (OSCC). UHPLC-TOF-MS analysis revealed the presence of 25 compounds, including heptelidic acid, viridiol isomers, and sorbicillinol from the different Trichoderma extracts. Pharmacokinetic analysis showed moderate permeability and low interaction with P-glycoprotein, suggesting good drug absorption with minimal interference in cellular uptake. ADME-Tox analysis indicated limited inhibition of cytochrome P450 enzymes, low renal clearance, which are favorable for maintaining therapeutic levels. Toxicity predictions revealed some compounds with potential mutagenicity, but low hepatotoxicity and skin sensitization risks. Network pharmacology identified MAPK1 as a key target for oral cancer, and molecular docking and induced fit docking studies demonstrated strong binding affinities of Trichoderma metabolites, including stachyose and harzianol, to MAPK1. In addition, molecular dynamics (MD) simulations confirmed stable interactions. In vitro studies on NIH3T3 and YD-10B cells showed significant cytotoxicity, particularly with extracts CNU-05-001 (IC50:10.15 µg/mL) and CNU-02-009 (10.00 µg/mL) against YD-10B cells. These findings underscore the potential of Trichoderma metabolites in drug discovery, particularly for cancer therapies.
Keywords: Anticancer activity; Cytotoxicity; Molecular docking; Pharmacokinetics; Trichoderma metabolites.
Copyright © 2025. Published by Elsevier Ltd.