A high-speed MPPT based horse herd optimization algorithm with dynamic linear active disturbance rejection control for PV battery charging system

Sci Rep. 2025 Jan 25;15(1):3229. doi: 10.1038/s41598-025-85481-6.

Abstract

This study first proposes an innovative method for optimizing the maximum power extraction from photovoltaic (PV) systems during dynamic and static environmental conditions (DSEC) by applying the horse herd optimization algorithm (HHOA). The HHOA is a bio-inspired technique that mimics the motion cycles of an entire herd of horses. Next, the linear active disturbance rejection control (LADRC) was applied to monitor the HHOA's reference voltage output. The LADRC, known for managing uncertainties and disturbances, improves the anti-interference capacity of the maximum power point tracking (MPPT) technique and speeds up the system's response rate. Then, in comparison to the traditional method (perturb & observe; P&O) and metaheuristic algorithms (conventional particle swarm optimization; CPSO, grasshopper optimization; GHO, and deterministic PSO; DPSO) through DSEC, the simulations results demonstrate that the combination HHOA-LADRC can successfully track the global maximum peak (GMP) with less fluctuations and a quicker convergence time. Finally, the experimental investigation of the proposed HHOA-LADRC was accomplished with the NI PXIE-1071 Hardware-In-Loop (HIL) prototype. The output findings show that the effectiveness of the provided HHOA-LADRC may approach a value higher than 99%, showed a quicker rate of converging and less oscillations in power through the detection mechanism.

Keywords: Dynamic and static environmental conditions; Dynamic control; MPPT; Optimization techniques; Photovoltaic battery chargers.