Magnetic Resonance Imaging is a cornerstone of medical diagnostics, providing high-quality soft tissue contrast through non-invasive methods. However, MRI technology faces critical limitations in imaging speed and resolution. Prolonged scan times not only increase patient discomfort but also contribute to motion artifacts, further compromising image quality. Compressed Sensing (CS) theory has enabled the acquisition of partial k-space data, which can then be effectively reconstructed to recover the original image using advanced reconstruction algorithms. Recently, deep learning has been widely applied to MRI reconstruction, aiming to reduce the artifacts in the image domain caused by undersampling in k-space and enhance image quality. As deep learning continues to evolve, the undersampling factors in k-space have gradually increased in recent years. However, these layers are limited in compensating for reconstruction errors in the unsampled areas, impeding further performance improvements. To address this, we propose a learnable spatial-frequency difference-aware module that complements the learnable data consistency layer, mapping k-space domain differences to the spatial image domain for perceptual compensation. Additionally, inspired by wavelet decomposition, we introduce explicit priors by decomposing images into mean and residual components, enforcing a refined zero-mean constraint on the residuals while maintaining computational efficiency. Comparative experiments on the FastMRI and Calgary-Campinas datasets demonstrate that our method achieves superior reconstruction performance against seven state-of-the-art techniques. Ablation studies further confirm the efficacy of our model's architecture, establishing a new pathway for enhanced MRI reconstruction.
Keywords: Deep learning; MRI reconstruction; Spatial-Frequency difference-aware; Zero-centric residual learning.
Copyright © 2025. Published by Elsevier Inc.