Electrospinning Membrane with Polyacrylate Mixed Beta-Cyclodextrin: An Efficient Adsorbent for Cationic Dyes

Polymers (Basel). 2025 Jan 20;17(2):243. doi: 10.3390/polym17020243.

Abstract

A simple and non-chemical binding nanofiber (β-CD/PA) adsorbent was obtained by electrospinning a mixture of β-cyclodextrin (β-CD) and polyacrylate (PA). The cationic dyes in wastewater were removed by the host-guest inclusion complex of the β-cyclodextrin and the electrostatic interaction between the polyacrylate and the dyes groups. The influence of the content of β-cyclodextrin on the surface morphology and adsorption capacity of the nanofiber membrane was discussed, and the optimized adsorption capacity of nanofiber adsorption material was determined. The adsorption capacity of nanofiber adsorbents for basic red 9, basic red 14, basic red 46, basic blue 9, basic yellow 19 and basic yellow 28 was 86.71 mg/g, 21.513 mg/g, 18.926 mg/g, 44.525 mg/g, 116.516 mg/g and 155.206 mg/g, respectively. The effects of different initial concentrations and pH values on the adsorption properties of adsorbent materials were studied. The kinetic analysis showed that the adsorption process of nanofibers for cationic dyes was more in line with the pseudo-second-order kinetic adsorption model. Moreover, nanofiber adsorbent could be easily separated from the dye solution and showed high recycling efficiency. These results indicated that the β-cyclodextrin/polyacrylate composite nanofibers are expected to be recyclable adsorbents in dye wastewater treatment.

Keywords: adsorption; cationic dye; electrospinning; polyacrylate; β-cyclodextrin.