Water pipelines in water diversion projects can leak, leading to soil deformation and ground subsidence, necessitating research into soil deformation monitoring technology. This study conducted model tests to monitor soil deformation around leaking buried water pipelines using distributed fiber optic strain sensing (DFOSS) technology based on optical frequency domain reflectometry (OFDR). By arranging strain measurement fibers in a pipe-soil model, we investigated how leak location, leak size, pipe burial depth, and water flow velocity affect soil strain field monitoring results. The results showed that pipeline leakage creates a "saddle-shaped" spatial distribution of soil strain above the pipeline, effectively indicating ground subsidence locations. When only one survey line is arranged, it is preferable to place the optical fiber directly above the pipeline. Surface monitoring fibers primarily detected tensile strain, with more pronounced peak values observed under conditions of larger leak size, higher flow velocity, shallow burial depth, and top-pipe leakage location. Monitoring fibers below the pipeline showed mainly unimodal distribution, with peak strain coinciding with the leak location. The sequential timing of strain changes at different fiber positions enabled the determination of soil seepage direction. This study demonstrates that DFOSS technology can provide important support for the early warning of such geological disasters.
Keywords: distributed fiber optic strain sensing (DFOSS); ground subsidence; leakage of underground water pipeline; model test.