AFN-Net: Adaptive Fusion Nucleus Segmentation Network Based on Multi-Level U-Net

Sensors (Basel). 2025 Jan 7;25(2):300. doi: 10.3390/s25020300.

Abstract

The task of nucleus segmentation plays an important role in medical image analysis. However, due to the challenge of detecting small targets and complex boundaries in datasets, traditional methods often fail to achieve satisfactory results. Therefore, a novel nucleus segmentation method based on the U-Net architecture is proposed to overcome this issue. Firstly, we introduce a Weighted Feature Enhancement Unit (WFEU) in the encoder decoder fusion stage of U-Net. By assigning learnable weights to different feature maps, the network can adaptively enhance key features and suppress irrelevant or secondary features, thus maintaining high-precision segmentation performance in complex backgrounds. In addition, to further improve the performance of the network under different resolution features, we designed a Double-Stage Channel Optimization Module (DSCOM) in the first two layers of the model. This DSCOM effectively preserves high-resolution information and improves the segmentation accuracy of small targets and boundary regions through multi-level convolution operations and channel optimization. Finally, we proposed an Adaptive Fusion Loss Module (AFLM) that effectively balances different lossy targets by dynamically adjusting weights, thereby further improving the model's performance in segmentation region consistency and boundary accuracy while maintaining classification accuracy. The experimental results on 2018 Data Science Bowl demonstrate that, compared to state-of-the-art segmentation models, our method shows significant advantages in multiple key metrics. Specifically, our model achieved an IOU score of 0.8660 and a Dice score of 0.9216, with a model parameter size of only 7.81 M. These results illustrate that the method proposed in this paper not only excels in the segmentation of complex shapes and small targets but also significantly enhances overall performance at lower computational costs. This research offers new insights and references for model design in future medical image segmentation tasks.

Keywords: U-Net; feature fusion; loss function; medical image segmentation; small target segmentation.