To improve the application of carbon-fiber-reinforced polymers (CFRPs) in civil engineering, the long-term durability of CFRP anchorage systems has become a critical issue. Temperature fluctuations can significantly impact the bond performance between CFRPs and the load transfer medium (LTM), making it essential to understand the effects of temperature on the durability of CFRP anchorages. Therefore, this study investigates the influence of temperature on the durability of CFRP anchorages through aging tests on 30 epoxy-filled CFRP-bonded anchorage specimens, followed by pull-out tests. The long-term degradation of CFRP cable anchorage performances in representative regions of the globe was predicted using Arrhenius theory. The experimental results show that after long-term temperature exposure, the maximum bond strength of the CFRP-LTM interface in the anchoring zone degrades after 30 days but continues to increase after 150 days. In contrast, the residual bond strength of the CFRP-LTM interface in the anchorage zone continuously decreases over time, with the degradation rates gradually decreasing over time. Higher temperatures lead to more severe degradation of anchoring performance. Based on the experimental results, it is predicted that the anchoring performance of a CFRP cable anchorage system will reach degradation rates of 63.72%, 83.36%, and 94.73% after 50 years in regions with average annual temperatures of 0 °C, 10 °C, and 20 °C, respectively. Therefore, the temperature has a significant long-term impact on the anchoring performance of CFRP cable bonding systems, necessitating a more conservative design in higher-temperature areas.
Keywords: Arrhenius theory; CFRP anchorage; durability; interface residual bond strength; temperature effect.