We incorporated Espaloma forcefield parameterization into MoSDeF tools for performing molecular dynamics simulations of organic molecules with HOOMD-Blue. We compared equilibrium morphologies predicted for perylene and poly-3-hexylthiophene (P3HT) with the ESP-UA forcefield in the present work against prior work using the OPLS-UA forcefield. We found that, after resolving the chemical ambiguities in molecular topologies, ESP-UA is similar to GAFF. We observed the clustering/melting phase behavior to be similar between ESP-UA and OPLS-UA, but the base energy unit of OPLS-UA was found to better connect to experimentally measured transition temperatures. Short-range ordering measured by radial distribution functions was found to be essentially identical between the two forcefields, and the long-range ordering measured by grazing incidence X-ray scattering was qualitatively similar, with ESP-UA matching experiments better than OPLS-UA. We concluded that Espaloma offers promise in the automated screening of molecules that are from more complex chemical spaces.
Keywords: organic semiconductors; polymer & macromolecule science; polymer science.