Terpenoids, abundant and structurally diverse secondary metabolites in plants, especially in conifer species, play crucial roles in the plant defense mechanism and plant growth and development. In Pinus massoniana, terpenoids' biosynthesis relies on both the mevalonate (MVA) pathway and the 2-methyl-D-erythritol-4-phosphate (MEP) pathway, with 1-hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate synthase (HDS) catalyzing the sixth step of the MEP pathway. In this study, we cloned and conducted bioinformatics analysis of the PmHDS gene from P. massoniana. The results showed that PmHDS shares homology with HDS proteins from other species. Analysis of tissue expression patterns indicated that PmHDS exhibits the highest expression level in xylem tissue, followed by stems, with significantly lowest expression in the apical meristem. Treatment with NaCl, abscisic acid (ABA), ethylene (ETH), methyl jasmonate (MeJA), and salicylic acid (SA) upregulated the expression of PmHDS. Furthermore, we successfully cloned the PmHDS promoter (about 2220 bp) and integrated it into a GUS reporter vector, which resulted in GUS activity being observed in various tissues of Arabidopsis thaliana. Overexpression of the PmHDS gene in A. thaliana significantly increased the content of carotenoids, chlorophylls a and b, and related enzyme activities, as well as the levels of terpenoid derivatives such as cytokinin (CTK), gibberellic acid (GA), and ABA, thereby enhancing the resistance to those abiotic stresses. These findings suggest that PmHDS plays an important role in the terpenoid synthesis pathway. This study provides a theoretical basis for understanding the biosynthesis of terpenoids and lays a foundation for future research on the regulation of terpene synthesis and resistance in molecular breeding.
Keywords: HDS; Pinus massoniana Lamb.; abiotic stresses; terpenoids.