Developing a novel and potent adjuvant with excellent biocompatibility for immune response augmentation is crucial for enhancing vaccine efficacy. Here, we prepared a stable PLGA nanoparticle by encapsulating MnCl2/Salvia miltiorrhiza polysaccharide (MS-PLGA) and employed it as an adjuvant in the model antigen OVA (MS-PLGA-OVA) to elicit potent immunity. The biological experiments indicated that the MS-PLGA-OVA could effectively recruit APCs to the injection site and provoke long-term antibodies. Compared with the conventional Alum adjuvanted group, the MS-PLGA-OVA increased the IgG2a antibody titers and CD8+T cells maturation, triggering cytotoxic T lymphocyte response and inducing the activation of memory T cells. Importantly, the MS-PLGA could up-regulate the expression of TLRs and cGAS-STING pathway-related genes, thus increasing the DCs maturation, as well as the secretion of interleukin and IFN-β. Collectively, the MS-PLGA system may provide a novel and efficient adjuvant platform for various prophylactic vaccines and insights for the development of the next-generation nano adjuvant.
Keywords: Adjuvant; Cellular immune; Humoral immune; Mn(2+); PLGA; Salvia miltiorrhiza polysaccharide.
Copyright © 2025. Published by Elsevier B.V.