Automated detection of traumatic bleeding in CT images using 3D U-Net# and multi-organ segmentation

Biomed Phys Eng Express. 2025 Jan 24. doi: 10.1088/2057-1976/adae14. Online ahead of print.

Abstract

Traumatic injury remains a leading cause of death worldwide, with traumatic bleeding being one of its most critical and fatal consequences. The use of whole-body computed tomography (WBCT) in trauma management has rapidly expanded. However, interpreting WBCT images within the limited time available before treatment is particularly challenging for acute care physicians. Our group has previously developed an automated bleeding detection method in WBCT images. However, further reduction of false positives (FPs) is necessary for clinical application. To address this issue, we propose a novel automated detection for traumatic bleeding in CT images using deep learning and multi-organ segmentation; Methods: The proposed method integrates a three-dimensional U-Net# model for bleeding detection with an FP reduction approach based on multi-organ segmentation. The multi-organ segmentation method targets the bone, kidney, and vascular regions, where FPs are primarily found during the bleeding detection process. We evaluated the proposed method using a dataset of delayed-phase contrast-enhanced trauma CT images collected from four institutions; Results: Our method detected 70.0% of bleedings with 76.2 FPs/case. The processing time for our method was 6.3 ± 1.4 min. Compared with our previous ap-proach, the proposed method significantly reduced the number of FPs while maintaining detection sensitivity.

Keywords: computed tomography; computer-assisted detection (CAD); deep learning; traumatic bleeding.