Due to the labor-intensive manual annotations for nuclei segmentation, point-supervised segmentation based on nuclei coordinate supervision has gained recognition in recent years. Despite great progress, two challenges hinder the performance of weakly supervised nuclei segmentation methods: (1) The stable and effective segmentation of adjacent cell nuclei remains an unresolved challenge. (2) Existing approaches rely solely on initial pseudo-labels generated from point annotations for training, and inaccurate labels may lead the model to assimilate a considerable amount of noise information, thereby diminishing performance. To address these issues, we propose a method based on center-point prediction and pseudo-label updating for precise nuclei segmentation. First, we devise a Gaussian kernel mechanism that employs multi-scale Gaussian masks for multi-branch center-point prediction. The generated center points are utilized by the segmentation module to facilitate the effective separation of adjacent nuclei. Next, we introduce a point-guided attention mechanism that concentrates the segmentation module's attention around authentic point labels, reducing the noise impact caused by pseudo-labels. Finally, a label updating mechanism based on the exponential moving average (EMA) and k-means clustering is introduced to enhance the quality of pseudo-labels. The experimental results on three public datasets demonstrate that our approach has achieved state-of-the-art performance across multiple metrics. This method can significantly reduce annotation costs and reliance on clinical experts, facilitating large-scale dataset training and promoting the adoption of automated analysis in clinical applications.
Keywords: multi-scale Gaussian kernel; nuclei instance segmentation; point-guided attention; pseudo-label updating; weakly supervised learning.