Respiratory syncytial virus (RSV) is a major contributor to morbidity and mortality in infants. We developed an in vitro model of human respiratory infection to study cellular immune responses to RSV in infants, children, and adults. The model includes human lung epithelial A549 cells or human fetal lung fibroblasts infected with a clinical strain of RSV at a multiplicity of infection of 0.3, cocultured with human cord blood mononuclear cells (CBMCs) or peripheral blood mononuclear cells (PBMCs). Mononuclear cells were collected at multiple ages ranging from birth to adulthood. After 20 h of incubation, flow cytometry was used to measure CBMC/PBMC responses to RSV. A549s were more permissive to RSV and when infected produced more CCL5, CCL11, and CXCL9; less CSF-3, CXCL10, interleukin (IL)-1α, IL-1RA, and IL-6; and similar CCL2, CCL3, CCL4, CCL7, CXCL1, CXCL11, IL-1β, IL-7, IL-8, and tumor necrosis factor α compared with fibroblasts; A594s were used for subsequent experiments. CBMCs/PBMCs upregulated multiple markers of activation, maturation, and degranulation upon exposure to RSV-infected A549s. Interferon γ expression in natural killer, CD4, and CD8 cells and CD107a expression in natural killer cells showed a gradual increase from infancy to adulthood. IL-12 expression in dendritic cells and monocytes was highest in adult PBMCs. Our in vitro model of human RSV infection recapitulated the expected bias away from T helper 1 and effector responses to RSV infection in infancy and revealed changes in innate and adaptive RSV-specific cellular immune responses over time.
Keywords: cord blood; infant; innate immune response; respiratory cell model; respiratory syncytial virus.
© The Author(s) 2025. Published by Oxford University Press on behalf of The American Association of Immunologists.