Performance of Radiomics-based machine learning and deep learning-based methods in the prediction of tumor grade in meningioma: a systematic review and meta-analysis

Neurosurg Rev. 2025 Jan 24;48(1):78. doi: 10.1007/s10143-025-03236-3.

Abstract

Currently, the World Health Organization (WHO) grade of meningiomas is determined based on the biopsy results. Therefore, accurate non-invasive preoperative grading could significantly improve treatment planning and patient outcomes. Considering recent advances in machine learning (ML) and deep learning (DL), this meta-analysis aimed to evaluate the performance of these models in predicting the WHO meningioma grade using imaging data. A systematic search was performed in PubMed/MEDLINE, Embase, and the Cochrane Library for studies published up to April 1, 2024, and reporting the performance metrics of the ML models in predicting of WHO meningioma grade using imaging studies. Pooled area under the receiver operating characteristics curve (AUROC), specificity, and sensitivity were estimated. Subgroup and meta-regression analyses were performed based on a number of potential influencing variables. A total of 32 studies with 15,365 patients were included in the present study. The overall pooled sensitivity, specificity, and AUROC of ML methods for prediction of tumor grade in meningioma were 85% (95% CI, 79-89%), 87% (95% CI, 81-91%), and 93% (95% CI, 90-95%), respectively. Both the type of validation and study cohort (training or test) were significantly associated with model performance. However, no significant association was found between the sample size or the type of ML method and model performance. The ML predictive models show a high overall performance in predicting the WHO meningioma grade using imaging data. Further studies on the performance of DL algorithms in larger datasets using external validation are needed.

Keywords: Artificial intelligence; Deep learning; Machine learning; Meningioma; Meta-analysis.

Publication types

  • Systematic Review
  • Meta-Analysis
  • Review

MeSH terms

  • Deep Learning*
  • Humans
  • Machine Learning*
  • Meningeal Neoplasms* / diagnostic imaging
  • Meningeal Neoplasms* / pathology
  • Meningioma* / diagnostic imaging
  • Meningioma* / pathology
  • Neoplasm Grading* / methods
  • Radiomics