Development and evaluation of chitosan-coated virgin coconut oil-asiatic acid-loaded nanoemulgel for enhanced wound management

Int J Biol Macromol. 2025 Jan 21:299:140097. doi: 10.1016/j.ijbiomac.2025.140097. Online ahead of print.

Abstract

Wound management remains a significant challenge due to complications such as delayed healing and microbial infections, particularly in the conditions like diabetes mellitus, vascular disorders, and immunosuppression. This study aimed to develop a chitosan-coated virgin coconut oil-asiatic acid-loaded nanoemulsion gel (CS-ASA-NEG) to enhance wound healing outcomes. A central composite design (CCD) was employed using Design Expert 11 software to optimize the nanoemulsion formulation, with ternary phase diagrams (TPD) evaluating stable regions for Tween 20: Span 80 (T20:S80) ratios. The optimized 4:1 ratio yielded a nanoemulsion with a globule size of 131.80 ± 0.33 nm and an entrapment efficiency (EE%) of 94.86 ± 0.05 %. Stability studies confirmed the formulation's robustness at 5 °C and 25 °C for 28 days. The nanoemulgel was prepared using 1 % carbopol gel, with a pH of 5.50 ± 0.04 and viscosity of 16,481 ± 0.01 cP, making it suitable for topical use. Skin permeation and irritation studies indicated superior efficacy, with a maximum flux (Jmax) of 159.10 ± 0.08 μg/cm2/h, outperforming marketed gels. The formulation achieved a wound contraction rate of 99.86 ± 0.24 % by day 20, highlighting the synergistic benefits of asiatic acid, virgin coconut oil, and chitosan. CS-ASA-NEG offers a promising approach to improve wound healing.

Keywords: Asiatic acid; Chitosan; Nanoemulgel; Wound healing.