Novel Integration of Spatial and Single-Cell Omics Data Sets Enables Deeper Insights into IPF Pathogenesis

Proteomes. 2025 Jan 13;13(1):3. doi: 10.3390/proteomes13010003.

Abstract

Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease characterized by repetitive alveolar injuries with excessive deposition of extracellular matrix (ECM) proteins. A crucial need in understanding IPF pathogenesis is identifying cell types associated with histopathological regions, particularly local fibrosis centers known as fibroblast foci. To address this, we integrated published spatial transcriptomics and single-cell RNA sequencing (scRNA-seq) transcriptomics and adopted the Query method and the Overlap method to determine cell type enrichments in histopathological regions. Distinct fibroblast cell types are highly associated with fibroblast foci, and transitional alveolar type 2 and aberrant KRT5-/KRT17+ (KRT: keratin) epithelial cells are associated with morphologically normal alveoli in human IPF lungs. Furthermore, we employed laser capture microdissection-directed mass spectrometry to profile proteins. By comparing with another published similar dataset, common differentially expressed proteins and enriched pathways related to ECM structure organization and collagen processing were identified in fibroblast foci. Importantly, cell type enrichment results from innovative spatial proteomics and scRNA-seq data integration accord with those from spatial transcriptomics and scRNA-seq data integration, supporting the capability and versatility of the entire approach. In summary, we integrated spatial multi-omics with scRNA-seq data to identify disease-associated cell types and potential targets for novel therapies in IPF intervention. The approach can be further applied to other disease areas characterized by spatial heterogeneity.

Keywords: Idiopathic pulmonary fibrosis; cell type; gene signature; laser capture microdissection; mass spectrometry; multi-omics integration; protein signature; scRNA-seq; spatial proteomics; spatial transcriptomics.