Robust Two-Step Wavelet-Based Inference for Time Series Models

J Am Stat Assoc. 2021 Apr 22;117(540):1996-2013. doi: 10.1080/01621459.2021.1895176. eCollection 2022.

Abstract

Latent time series models such as (the independent sum of) ARMA(p, q) models with additional stochastic processes are increasingly used for data analysis in biology, ecology, engineering, and economics. Inference on and/or prediction from these models can be highly challenging: (i) the data may contain outliers that can adversely affect the estimation procedure; (ii) the computational complexity can become prohibitive when the time series are extremely large; (iii) model selection adds another layer of (computational) complexity; and (iv) solutions that address (i), (ii), and (iii) simultaneously do not exist in practice. This paper aims at jointly addressing these challenges by proposing a general framework for robust two-step estimation based on a bounded influence M-estimator of the wavelet variance. We first develop the conditions for the joint asymptotic normality of the latter estimator thereby providing the necessary tools to perform (direct) inference for scale-based analysis of signals. Taking advantage of the model-independent weights of this first-step estimator, we then develop the asymptotic properties of two-step robust estimators using the framework of the generalized method of wavelet moments (GMWM). Simulation studies illustrate the good finite sample performance of the robust GMWM estimator and applied examples highlight the practical relevance of the proposed approach.

Keywords: Generalized method of wavelet moments; Large-scale time series; Scale-based analysis of variance; Signal processing; State-space models; Wavelet variance.

Grants and funding

Stéphane Guerrier is partially supported by Swiss National Science Foundation grant #176843 and Innosuisse-Boomerang Grant 37308.1 IP-ENG. Roberto Molinari was partially supported by the NSF under Grants SES-1534433 and SES-1853209 and in part by the NCATS-NIH under Grant UL1 TR002014. Maria-Pia Victoria-Feser is partially supported by a Swiss National Science Foundation grant #182684.