Cancer is a condition in which cells in the body grow uncontrollably, often forming tumours and potentially spreading to various areas of the body. Cancer is a hazardous medical case in medical history analysis. Every year, many people die of cancer at an early stage. Therefore, it is necessary to accurately and early identify cancer to effectively treat and save human lives. However, various machine and deep learning models are effective for cancer identification. Therefore, the effectiveness of these efforts is limited by the small dataset size, poor data quality, interclass changes between lung squamous cell carcinoma and adenocarcinoma, difficulties with mobile device deployment, and lack of image and individual-level accuracy tests. To overcome these difficulties, this study proposed an extremely lightweight model using a convolutional neural network that achieved 98.16% accuracy for a large lung and colon dataset and individually achieved 99.02% for lung cancer and 99.40% for colon cancer. The proposed lightweight model used only 70 thousand parameters, which is highly effective for real-time solutions. Explainability methods such as Grad-CAM and symmetric explanation highlight specific regions of input data that affect the decision of the proposed model, helping to identify potential challenges. The proposed models will aid medical professionals in developing an automated and accurate approach for detecting various types of colon and lung cancer.
Keywords: assisted living; biocybernetics; biomedical measurement; blind source separation; brain; electroencephalography; medical signal processing; neural nets; patient monitoring; time‐frequency analysis.
© 2025 The Author(s). Healthcare Technology Letters published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.