Electroencephalogram Features Reflect Effort Corresponding to Graded Finger Extension: Implications for Hemiparetic Stroke

Biomed Phys Eng Express. 2025 Jan 20. doi: 10.1088/2057-1976/adabeb. Online ahead of print.

Abstract

Brain-computer interfaces (BCIs) offer disabled individuals the means to interact with devices by decoding the electroencephalogram (EEG). However, decoding intent in fine motor tasks can be challenging, especially in stroke survivors with cortical lesions. Here, we attempt to decode graded finger extension from the EEG in stroke patients with left-hand paresis and healthy controls. Participants extended their fingers to one of four levels: low, medium, high, or "no-go" (none), while hand, muscle (electromyography: EMG), and brain (EEG) activity were monitored. Event-related desynchronization (ERD) was measured as the change in 8-30 Hz EEG power during movement. Classifiers were trained on the ERD, EMG power, or both (EEG+EMG) to decode finger extension, and accuracy assessed via four-fold cross-validation for each hand of each participant. Mean accuracy exceeded chance (25%) for controls (n=11) at 62% for EMG, 60% for EEG, and 71% for EEG+EMG on the left hand; and 67%, 60%, and 74%, respectively, on the right hand. Accuracies were similar on the unimpaired right hand for the stroke group (n=3): 61%, 68%, and 78%, respectively. But on the paretic left hand, EMG only discriminated no-go from movement above chance (41%); in contrast, EEG gave 65% accuracy (68% for EEG+EMG), comparable to the non-paretic hand. The median ERD was significant (p < 0.01) over the cortical hand area in both groups and increased with each level of finger extension. But while the ERD favored the hemisphere contralateral to the active hand as expected, it was ipsilateral for the left hand of stroke due to the lesion in the right hemisphere, which may explain its discriminative ability. Hence, the ERD captures effort in finger extension regardless of success or failure at the task; and harnessing residual EMG improves the correlation. This marker could be leveraged in rehabilitative protocols that focus on fine motor control.

Keywords: Brain-computer interfaces; EEG; EMG; ERD; finger extension; movement effort; stroke.