Non-invasive [15O]H2O PET measurements of cerebral perfusion and cerebrovascular reactivity using an additional heart scan

J Cereb Blood Flow Metab. 2025 Jan 20:271678X251313743. doi: 10.1177/0271678X251313743. Online ahead of print.

Abstract

Obtaining the arterial input function (AIF) is essential for quantitative regional cerebral perfusion (rCBF) measurements using [15O]H2O PET. However, arterial blood sampling is invasive and complicates the scanning procedure. We propose a new non-invasive dual scan technique with an image derived input function (IDIF) from an additional heart scan. Six patients and two healthy subjects underwent [15O]H2O PET imaging of 1) heart and brain during baseline, and 2) heart and brain after infusion of acetazolamide. The IDIF was extracted from the left ventricle of the heart and compared to the AIF. The rCBF was compared for six bilateral cortical regions. AIFs and IDIFs showed strong agreement. rCBF with AIF and IDIF showed strong correlation for both baseline rCBF (R2 = 0.99, slope = 0.89 CI: [0.87; 0.91], p < 0.0001) and acetazolamide rCBF (R2 = 0.98, slope = 0.93, CI:[0.90;0.97], p < 0.0001) but showed a positive bias of 0.047 mL/(g·min) [-0.025; +0.119] for baseline and 0.024 [-1.04, +1.53] mL/(g·min) for acetazolamide. In conclusion, the invasive arterial cannulation can be replaced by an additional scan of the heart with a minor bias of rCBF estimation. The method is applicable to all scanner systems.

Keywords: Brain; cerebral blood flow; kinetic modelling; positron emission tomography; quantitative.