Motion-Compensated Multishot Pancreatic Diffusion-Weighted Imaging With Deep Learning-Based Denoising

Invest Radiol. 2025 Jan 20. doi: 10.1097/RLI.0000000000001148. Online ahead of print.

Abstract

Objectives: Pancreatic diffusion-weighted imaging (DWI) has numerous clinical applications, but conventional single-shot methods suffer from off resonance-induced artifacts like distortion and blurring while cardiovascular motion-induced phase inconsistency leads to quantitative errors and signal loss, limiting its utility. Multishot DWI (msDWI) offers reduced image distortion and blurring relative to single-shot methods but increases sensitivity to motion artifacts. Motion-compensated diffusion-encoding gradients (MCGs) reduce motion artifacts and could improve motion robustness of msDWI but come with the cost of extended echo time, further reducing signal. Thus, a method that combines msDWI with MCGs while minimizing the echo time penalty and maximizing signal would improve pancreatic DWI. In this work, we combine MCGs generated via convex-optimized diffusion encoding (CODE), which reduces the echo time penalty of motion compensation, with deep learning (DL)-based denoising to address residual signal loss. We hypothesize this method will qualitatively and quantitatively improve msDWI of the pancreas.

Materials and methods: This prospective institutional review board-approved study included 22 patients who underwent abdominal MR examinations from August 22, 2022 and May 17, 2023 on 3.0 T scanners. Following informed consent, 2-shot spin-echo echo-planar DWI (b = 0, 800 s/mm2) without (M0) and with (M1) CODE-generated first-order gradient moment nulling was added to their clinical examinations. DL-based denoising was applied to the M1 images (M1 + DL) off-line. ADC maps were reconstructed for all 3 methods. Blinded pair-wise comparisons of b = 800 s/mm2 images were done by 3 subspecialist radiologists. Five metrics were compared: pancreatic boundary delineation, motion artifacts, signal homogeneity, perceived noise, and diagnostic preference. Regions of interest of the pancreatic head, body, and tail were drawn, and mean ADC values were computed. Repeated analysis of variance and post hoc pairwise t test with Bonferroni correction were used for comparing mean ADC values. Bland-Altman analysis compared mean ADC values. Reader preferences were tabulated and compared using Wilcoxon signed rank test with Bonferroni correction and Fleiss κ.

Results: M1 was significantly preferred over M0 for perceived motion artifacts and signal homogeneity (P < 0.001). M0 was significantly preferred over M1 for perceived noise (P < 0.001), but DL-based denoising (M1 + DL) reversed this trend and was significantly favored over M0 (P < 0.001). ADC measurements from M0 varied between different regions of the pancreas (P = 0.001), whereas motion correction with M1 and M1 + DL resulted in homogeneous ADC values (P = 0.24), with values similar to those reported for ssDWI with motion correction. ADC values from M0 were significantly higher than M1 in the head (bias 16.6%; P < 0.0001), body (bias 11.0%; P < 0.0001), and tail (bias 8.6%; P = 0.001). A small but significant bias (2.6%) existed between ADC values from M1 and M1 + DL.

Conclusions: CODE-generated motion compensating gradients improves multishot pancreatic DWI as interpreted by expert readers and eliminated ADC variation throughout the pancreas. DL-based denoising mitigated signal losses from motion compensation while maintaining ADC consistency. Integrating both techniques could improve the accuracy and reliability of multishot pancreatic DWI.