Oncolytic viral-based therapy and specific gene expression by promoters are modern targeted oncotherapy approaches that have gained significant attention in recent years. In this study, both strategies were combined by designing cancer-specific activation of vesicular stomatitis virus matrix expression under the survivin promoter. The matrix sequence was cloned downstream of the survivin promoter (pM). After transfecting MCF-7 cells with pM, cell proliferation and apoptosis induction were assessed. Additionally, the transcript levels of matrix and apoptosis-related genes in response to pM was assessed. The proliferation of MCF-7 cells was significantly reduced by the constructed matrix-expressing plasmid at 48 and 72 h post-transfection (p < 0.05). Enhanced matrix expression resulted in the down-regulation of MMP-9, TP53, and NF-kB, while simultaneously up-regulating Bax transcripts. Evaluating the effect of pM vector on apoptosis induction revealed a significant increase in the MCF-7 cells compared to untreated cells (p < 0.05). The absence of significant matrix gene expression in HDF cells, relative to MCF-7 cells, further underscores the specific function of the Survivin promoter in cancer cells. These findings suggest that the matrix may have various biological functions in a diverse set of non-apoptotic pathways. Further research on the association of the matrix with other genes could provide insights into the biomedical significance and future perspectives of the matrix in cancer gene therapy.
Keywords: Breast cancer; Matrix protein (M); Survivin promoter; Vesicular stomatitis virus (VSV).
© 2025. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.